روشهای تداخلی هموتوپی و تکرار تغییراتی برای حل دستگاه معادلات دیفرانسیل غیر خطی

thesis
abstract

برای حل مسائل فیزیکی در اکثرمواقع آنها را به معادلات ریاضی تبدیل می کنیم . چنین معادلاتی ،غالباً به معادلات دیفرانسیل با شرایط اولیه و مرزی مشهور می باشند . به دلیل اینکه اینگونه معادلات که از مسائل واقعی فیزیکی مدل شده اند ، غیر خطی هستند یافتن جوابهای تحلیلی برای آنها دشوار و یاغیر ممکن است . در گذشته به دلیل عدم پیشرفت فناوری کامپیوتر ، برای حل آنها از روشهای عددی، مشکلات زیادی وجود داشت. بنابراین در راستای رفع این مشکلات ، تلاشهای زیادی برای حل آنها به روش تحلیلی صورت گرفته است. ازجمله این روشها حدس جواب مورد نظر به صورت یک تابع بسط داده شده است مانند بسط تیلور، بسط تداخلی و روش هموتوپی و روش تجزیه آدومیان می باشد. در این روش ها با حدس جواب به صورت بسط یک تابع و با قرار دادن آن در معادله دیفرانسیل و خارج کردن معادلات ساده تر و خطی به یک دستگاه معادلات خطی خواهیم رسید که جواب مورد نظر را پدید می آورد. این روشها را می توان نوعی حل تقریباً دقیق نامید که توانایی بسیاری در حل معادلات عمومی ، پاره ای غیر خطی و دستگاه معادلات جبری غیر خطی دارند

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

full text

حل یک دستگاه از معادلات خطی با روش آنالیز هموتوپی

در این مقاله، الگوریتم موثری برای حل دستگاه معادلات خطی بر اساس روش آنالیز هموتوپی ارائه می دهیم. این روش با روش تکرار ژاکوبی کلاسیک مقایسه شده و آنالیز همگرایی آن مورد مطالعه قرار می گیرد. در پایان دو مثال عددی برای موثر بودن این روش ارائه خواهیم داد.

full text

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

full text

پایداری تعادل در معادلات دیفرانسیل غیر خطی

در این مقاله در مورد پایداری تعادل در سیستم معادلات دیفرانسیل غیر خطی بحث شده است ضمن چند قضیه و مثال معیارهایی برای تعیین اینکه آیا این معادلات در نقطه به خصوصی پایدارند یا نه داده شده اند دراین مطالعه دستگاههای اتونوموس و غیز اتونوموس هر دو مورد بررسی قرار گرفته اند .

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شیراز

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023